Processing math: 3%

Thursday, 6 August 2020

Volume of tetrahedron limited by 4 planes

Consider the following puzzle:
Calculate the volume of a tetrahedron enclosed by the following 4 planes
a_1x+b_1y+c_1z+d_1=0\\a_2x+b_2y+c_2z+d_2=0\\a_3x+b_3y+c_3z+d_3=0\\a_4x+b_4y+c_4z+d_4=0

The easiest way to calculate this volume is by applying a linear transformation to the tetrahedron where the planes of the tetrahedron align to the coordinate planes. It is impossible to find a purely linear transformation that does this, as all linear transformations project the origin, to the origin, but it is possible to find a linear transformation, followed by a translation, to do this. As translations do not change the volume, this will not pose any unsolvable issues.

An example of such a transformation is

u=a_1x+b_1y+c_1z+d_1\\v=a_2x+b_2y+c_2z+d_2\\w=a_3x+b_3y+c_3z+d_3

To find the transformation of a given plane, one has to add the equation of the plane to the system of equations of the transformation. For example, for the first plane this becomes:

u=a_1x+b_1y+c_1z+d_1\\v=a_2x+b_2y+c_2z+d_2\\w=a_3x+b_3y+c_3z+d_3\\0=a_1x+b_1y+c_1z+d_1

Or solved: u=0. So the first plane matches the vw-plane.

This is analog for the two next planes, but things become interesting for the last plane, where the system becomes:

u=a_1x+b_1y+c_1z+d_1\\v=a_2x+b_2y+c_2z+d_2\\w=a_3x+b_3y+c_3z+d_3\\0=a_4x+b_4y+c_4z+d_4

Now, in our uvw space, we have a tetrahedron enclosed by the coordinate planes, and a 4th plane that is the solution of the above equation. Tetrahedra enclosed by all 3 coordinate planes have the following vertices: (0,0,0), (u,0,0), (0,v,0), (0,0,w) Each of these points can be found by solving the system of equations of 3 of the 4 planes. 

Using the first 3 planes obviously gives (0,0,0) as a solution.

Using all of them except the first gives us:

u=a_1x+b_1y+c_1z+d_1\\v=a_2x+b_2y+c_2z+d_2\\w=a_3x+b_3y+c_3z+d_3\\0=a_4x+b_4y+c_4z+d_4\\v=0\\w=0

This easily simplifies to 

u=a_1x+b_1y+c_1z+d_1\\0=a_2x+b_2y+c_2z+d_2\\0=a_3x+b_3y+c_3z+d_3\\0=a_4x+b_4y+c_4z+d_4

If we call:

A_1 =\left[ \begin{matrix} a_1&b_1&c_1&1\\a_2&b_2&c_2&0\\a_3&b_3&c_3&0\\a_4&b_4&c_4&0\end{matrix}\right]\\A_2 =\left[ \begin{matrix} a_1&b_1&c_1&0\\a_2&b_2&c_2&1\\a_3&b_3&c_3&0\\a_4&b_4&c_4&0\end{matrix}\right]\\A_3 =\left[ \begin{matrix} a_1&b_1&c_1&0\\a_2&b_2&c_2&0\\a_3&b_3&c_3&1\\a_4&b_4&c_4&0\end{matrix}\right]\\A_4 =\left[ \begin{matrix} a_1&b_1&c_1&0\\a_2&b_2&c_2&0\\a_3&b_3&c_3&0\\a_4&b_4&c_4&1\end{matrix}\right]

D = \left[\begin{matrix} d_1\\d_2\\d_3\\d_4 \end{matrix}\right]

X = \left[\begin{matrix} x\\y\\z\\-u \end{matrix}\right]

The system can be rewritten as

A_1X+D=0

X=-A_1^{-1}D

Now as 

u =  -\left[\begin{matrix} 0&0&0&1 \end{matrix}\right]X

u =  \left[\begin{matrix} 0&0&0&1 \end{matrix}\right]A_1^{-1}D

u =  \frac{1}{\det{A_1}}\left[\begin{matrix} 0&0&0&1 \end{matrix}\right]\text{adj}{A_1}D

As the bottom row of \text{adj}{A_1} equals

\left| \begin{matrix}a_2&b_2&c_2\\a_3&b_3&c_3\\a_4&b_4&c_4\end{matrix}\right|;\left| \begin{matrix} a_1&b_1&c_1\\a_3&b_3&c_3\\a_4&b_4&c_4\end{matrix}\right|;\left| \begin{matrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_4&b_4&c_4\end{matrix}\right|;\left| \begin{matrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{matrix}\right|

Then 
\left[\begin{matrix} 0&0&0&1 \end{matrix}\right]\text{adj}{A_1}D = d_1\det{A_1}+d_2\det{A_2}+d_3\det{A_3}+d_4\det{A_4}

If one defines:

M =\left[ \begin{matrix} a_1&b_1&c_1&d_1\\a_2&b_2&c_2&d_2\\a_3&b_3&c_3&d_3\\a_4&b_4&c_4&d_4\end{matrix}\right]

Then is

u = \frac{\det{M}}{\det{A_1}}

Analog is 

v = \frac{\det{M}}{\det{A_2}}\\w =\frac{\det{M}}{\det{A_3}}

Now the volume of the tetrahedron is the surface area of one of the faces time the height divided by 3, so if one takes the face to be the vw-plane, the volume is

\frac{u}{3} \times \frac{vw}{2} =  \frac{uvw}{6}

In uvw space. In xyz space the volume has to be divided by the Jacobian:

\left| \begin{matrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{matrix}\right|

which is \det{A_4} so the final volume becomes:

\frac{\det{M}^3}{6\det{A_1}\det{A_2}\det{A_3}\det{A_4}}

Or expanded:
\frac{{\left| \begin{matrix} a_1&b_1&c_1&d_1\\a_2&b_2&c_2&d_2\\a_3&b_3&c_3&d_3\\a_4&b_4&c_4&d_4\end{matrix}\right|^3}}{6\left| \begin{matrix}a_2&b_2&c_2\\a_3&b_3&c_3\\a_4&b_4&c_4\end{matrix}\right|\left| \begin{matrix} a_1&b_1&c_1\\a_3&b_3&c_3\\a_4&b_4&c_4\end{matrix}\right|\left| \begin{matrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_4&b_4&c_4\end{matrix}\right|\left| \begin{matrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{matrix}\right|}